Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)We report on computational studies of the potential of three borane Lewis acids (LAs) (B(C 6 F 5 ) 3 (BCF), BF 3 , and BBr 3 ) to form stable adducts and/or to generate positive polarons with three different semiconducting π-conjugated polymers (PFPT, PCPDTPT and PCPDTBT). Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations based on range-separated hybrid (RSH) functionals provide insight into changes in the electronic structure and optical properties upon adduct formation between LAs and the two polymers containing pyridine moieties, PFPT and PCPDTPT, unravelling the complex interplay between partial hybridization, charge transfer and changes in the polymer backbone conformation. We then assess the potential of BCF to induce p-doping in PCPDTBT, which does not contain pyridine groups, by computing the energetics of various reaction mechanisms proposed in the literature. We find that reaction of BCF(OH 2 ) to form protonated PCPDTBT and [BCF(OH)] − , followed by electron transfer from a pristine to a protonated PCPDTBT chain is highly endergonic, and thus unlikely at low doping concentration. The theoretical and experimental data can, however, be reconciled if one considers the formation of [BCF(OH)BCF] − or [BCF(OH)(OH 2 )BCF] − counterions rather than [BCF(OH)] − and invokes subsequent reactions resulting in the elimination of H 2 .more » « less
-
Abstract PCPDTBT‐SO3K (CPE‐K), a conjugated polyelectrolyte, is presented as a mixed conductor material that can be used to fabricate high transconductance accumulation mode organic electrochemical transistors (OECTs). OECTs are utilized in a wide range of applications such as analyte detection, neural interfacing, impedance sensing, and neuromorphic computing. The use of interdigitated contacts to enable high transconductance in a relatively small device area in comparison to standard contacts is demonstrated. Such characteristics are highly desired in applications such as neural‐activity sensing, where the device area must be minimized to reduce invasiveness. The physical and electrical properties of CPE‐K are fully characterized to allow a direct comparison to other top performing OECT materials. CPE‐K demonstrates an electrical performance that is among the best reported in the literature for OECT materials. In addition, CPE‐K OECTs operate in the accumulation mode, which allows for much lower energy consumption in comparison to commonly used depletion mode devices.more » « less
An official website of the United States government
